23
24
25
26
27
28
29

39
40
41
42
43
44

Vision for a Secure Elixir Ecosystem: An Empirical Study of
Vulnerabilities in Elixir Programs

Dibyendu Brinto Bose
Reve System
Dhaka, Bangladesh

ABSTRACT

Since its inception in 2011, Elixir has emerged as a popular program-
ming language. Currently, Elixir is used in a diverse set of domains,
such as instant messaging, smart farming, and e-commerce. Usage
of Elixir in above-mentioned domains necessitates gaining an un-
derstanding of the state of vulnerabilities that are reported for Elixir
programs. An empirical analysis of vulnerability-related commits,
i.e., commits that indicate action taken to mitigate vulnerabilities,
can help us understand how frequently vulnerabilities appear in
Elixir programs. Such understanding can also be a starting point
to integrate secure software development practices into the Elixir
ecosystem. We conduct an empirical study where we mine 4,446
commits from 25 open source Elixir repositories from GitHub. Our
findings show that (i) 2.0% of the 4,446 commits are vulnerability-
related, (ii) 18.0% of the 1,769 Elixir programs in our dataset are
modified in vulnerability-related commits, and (iii) the proportion
of vulnerability-related commits is highest in 2020. Despite Elixir
being perceived as a ‘safe’ language, our empirical study shows
programs written in Elixir to contain vulnerabilities. Based on our
findings, we recommend researchers to investigate the root causes
of introducing vulnerabilities in Elixir programs.

CCS CONCEPTS

« Software and its engineering — Frameworks; « Security and
privacy — Software security engineering.

KEYWORDS
dataset, empirical study, elixir, vulnerability

ACM Reference Format:
Dibyendu Brinto Bose, Kaitlyn Cottrell, and Akond Rahman. 2022. Vision
for a Secure Elixir Ecosystem: An Empirical Study of Vulnerabilities in Elixir
Programs. In 2022 ACM Southeast Conference (ACMSE 2022), April 18-20,
2022, Oxford, AL, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/
10.1145/3409334.3YYYYYY

1 INTRODUCTION

Elixir is a programming language that provides fault tolerance with-
out sacrificing the simplicity of scripting languages, such as Ruby.
Since its inception in 2011, Elixir has gained in popularity in recent

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACMSE 2022, April 18-20, 2022, Oxford, AL, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-8697-5/22/04...$15.00
https://doi.org/10.1145/3409334.3YYYYYY

Kaitlyn Cottrell

Tennessee Tech University

USA

Akond Rahman
Tennessee Tech University
USA

years. Information technology (IT) organizations, such as Discord,
Pinterest, and WeChat have reported benefits in using Elixir. For
example, Discord used Elixir to build their service to support 5 mil-
lion concurrent users [13]. As another example, Pinterest reported
Elixir to help them “speed up the performance of their notification
system delivering 14,000 notifications per second, and cut down the
number of servers by half—from 30 to just 15—compared to when the
service relied on Java” [13].

Practitioners perceive Elixir to be a ‘safe’ language, as the lan-
guage allows practitioners to write fast software programs without
introducing vulnerabilities, unlike other languages, such as C [16].
Positive perception of practitioners about the safety and security
Elixir programs is subject to empirical validation. Practitioner per-
ceptions are formed through personal experience, and not based on
empirical evidence [9]. A systematic empirical investigation that
quantifies reported security vulnerabilities can shed light on the
state of security of Elixir programs. Such empirical investigation
canalso yield recommendations for practitioners and researchers
on how to securely develop Elixir programs. As Elixir’s use becomes
more and more prevalent in large-scale systems with millions of
users, such as for WeChat with 300 million daily active users [10],
insecure Elixir programs with latent vulnerabilities can result in
serious consequences.

We answer the following research question in our empirical
study: RQ: How Frequent are Vulnerabilities Reported for
Elixir Programs?

We conduct an empirical study where we mine 4,446 commits
from 25 OSS Elixir repositories from GitHub to quantify vulnerability-
related commits, i.e., commits that indicate action taken to mitigate
vulnerabilities. We apply a qualitative analysis technique called
closed coding [18], where we use raters to inspect commit mes-
sages in order to determine if commits are reflective of taking an
action related to vulnerability mitigation.

Contribution: We list our contribution as follows:

e An empirical analysis of how frequently vulnerabilities are
reported for Elixir programs; and

e A curated dataset where vulnerability-related commits are
identified.

2 BACKGROUND AND RELATED WORK

We provide background and related work related to Elixir in this
section.

2.1 Background

Released in 2011, Elixir is meant to incorporate all of Erlang’s pow-
erful tools for parallel and concurrent computation while having
Ruby-like syntax. Erlang is a programming language founded on

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77
78

80

81

82
83

85

86

87

88

89

91

92

93

94

96

97

98

99

100

101

102

103

104

111

112

113

114

115

116

three primary principles: concurrency, fault tolerance, and distribu-
tion. These principles were defined based on the original use case
of telecommunications. As time went on, Erlang remained relevant,
but still had problems surrounding syntax and lack of modern tool-
ing. This was addressed by creating Elixir. All of Elixir’s code ends
up as byte code which is used by the Erlang virtual machine called
BEAM [15].

Since Elixir is built on top of BEAM, it shares the same abstrac-
tions as Erlang that makes it well suited for concurrent applications.
Elixir makes use of lightweight, isolated processes that run across
all CPUs, and immutable data to make concurrency easier. These
same isolated processes also allow for simple scalability, both in
adding more machines, and in using a current machine’s resources
more efficiently. The processes also help to acheive reliability be-
cause they can be restarted quickly by the supervisory system if a
problem occurs. Apart from BEAM, Elixir also inherits the Open
Telecom Platform (OTP) from Erlang, which is a standard resource
in Erlang’s library for use in fault-tolerance for telecom systems,
though is now useful for any concurrent applications [11].

We provide an example Elixir program in Listing 1. The File. open()

function in the program takes two parameters: the path of the file,
and the mode to be opened in. The program creates a new file
called ‘HelloFile’, and opens that file for writing data in it. The
File.open function returns a tuple where the first element of the
tuple represents status (:ok), and the second element of the tu-
ple is the process ID of the process that will handle the file. Next,
the I0.binwrite() function is used to write to the file opened
with File.Open(). Next, the File.close function closes the file.
Finally, with the File.read() function ‘HelloFile’ is read. The
File.read() returns a tuple where the first element of the tuple
represents status (: ok), and the second element of the tuple is the
file content, i.e., ‘world’.

{:0k, file} = File.open("HelloFile", [:writel])
I0.binwrite(file, "world")

File.close(file)

File.read("hello")

Listing 1: An example Elixir program to demonstrate file
read write operations.

2.2 Related Work

Our paper is closely related to existing research that has inves-
tigated Elixir programs and their usage. Avila et al. [3] explores
how Elixir may potentially help to alleviate the issues that can
come with coding for embedded devices. Fedrecheski et al. [12]
investigates how useful Elixir could be in creating IoT software
programs. Chhabra et al. [7] presents a machine learning tool set,
Tensorflex, which allows Elixir programmers to utilize Tensorflow,
a machine learning framework to create machine learning appli-
cations. Cassola et al. [6] proposes a type system that makes it
possible to perform static type-checking for Elixir programs.

The above-mentioned discussion shows a lack of research related
to vulnerabilities in Elixir programs, which we address in our paper.

3 METHODOLOGY

We provide the methodology to answer: RQ: How Frequent are
Vulnerabilities Reported for Elixir Programs? in this section.

Our methodology involves two steps: first, mining of OSS Elixir
repositories, and second, use of closed coding to identify vulnerability-
related commits that are related to vulnerabilities. An overview of
our methodology is presented in Figure 1.

3.1 Elixir Repository Mining

We use OSS Elixir repositories hosted on GitHub to conduct our
empirical study. First, we use GitHub’s search utility to filter reposi-
tories whose main programming language is Elixir. This step yielded
31,624 repositories. Next, we use the count of stars to identify the
top 25 repositories that are popular amongst the open source Elixir
community. We use star count as stars are reflective of popularity for
repositories hosted on GitHub [4]. From the 25 Elixir repositories,
we identify 4,446 commits that are used to modify Elixir programs.
Attributes of the used repositories are available in Table 1.

Table 1: Repository Attributes

Attribute Count
Repositories 25
Elixir Files 1,769
Elixir-related Commits 4,446
Duration 03/2012-12/2020

3.2 Qualitative analysis of commits

We use commits to quantify vulnerabilities as commits express
actions related to software development [1]. We use all 4,446 com-
mits collected from Section 3.1. We apply a qualitative analysis
technique called closed coding, where a rater inspects text excerpts
and maps the set of text excerpts to a pre-defined category [18].
We apply closed coding with two raters who are well-versed in
software security to conduct the closed coding process. The first
rater is the first author of the paper with two years of academic ex-
perience in cybersecurity, and one year of professional experience
in software engineering. The second rater is not an author of the
paper and participated voluntarily. The second rater is a graduate
student in the department with one year of professional experience
in cybersecurity. Both raters individually determine if each of the
collected commits to be security-related by performing the follow-
ing activities: Activity-1: The rater observes if any of the following
keywords appear in each of the collected commit messages: ‘race’,
‘racy’, ‘buffer’, ‘overflow’, ‘stack’, ‘integer’, ‘signedness’, ‘widthness’,
‘underflow’, ‘improper’, ‘unauthenticated’, ‘gain access’, ‘permis-
sion’, ‘cross site’, ‘css’, ‘xss’, ‘htmlspecialchar’, ‘denial service’, ‘dos’,
‘crash’, ‘deadlock’, ‘sql’, ‘sqli’, ‘injection’, ‘format’, ‘string’, ‘printf”,
‘scanf’, ‘request forgery’, ‘csrf’, ‘xsrf’, ‘forged’, ‘security’, ‘vulner-
ability’, ‘vulnerable’, ‘hole’, ‘exploit’, ‘attack’, ‘bypass’, ‘backdoor’,
‘threat’, ‘expose’, ‘breach’, ‘violate’, ‘fatal’, ‘blacklist’, ‘overrun’, and
‘insecure’. We collect these keywords from prior work [5]. Activity-
2: The rater determines a commit to be a security-related defect if
the message indicates that an action was taken to address a security
concern for the software of interest. The rater determines a commit
message to be related to a vulnerability if any of the following se-
curity objects are violated: confidentiality, integrity, or availability.
We apply this step because only relying on keyword search could

ae668. .
commit | size
tree | cdecs
paranr | —vene
| au

author Scott

Closed
Coding

Mine
Commits

Elixir
Repos

No
Disagree?
parent ald9e

ae668. .
commit
tree

cdec5

author Scott

committer | Scott

Yes T

and it is really

U

Vulnerability-related

Resolution Commits

Figure 1: An overview of our methodology.

generate false positives. Activity-3: We calculate rater agreement
using Cohen’s Kappa [8].

After completing the above-mentioned activities, we obtain a
dataset with each commit to be vulnerability-related or not. If a
commit is related to a vulnerability, it is labeled as “VULNERABLE’,
otherwise the commit is labeled as ‘NEUTRAL’. Our research ques-
tion is answered by reporting the count and proportion of commits
that are labeled “‘VULNERABLE’. We also report the proportion of
commits that are labeled as “‘VULNERABLE’ for each year using
Equation 1.

PER_YEAR_PROPORTION(y) =
of commits in month y mapped as ‘VULNERABLE’ (1)

count of commits in year y

3.3 Limitations

Our methodology is susceptible to the following limitations:

e The derived dataset is restricted by rater bias, which we
mitigate using two raters.

e Our dataset is collected from the OSS GitHub repositories,
which is limiting and may not generalize to proprietary
datasets.

o Our identification process of vulnerabilities using keywords
can generate false positives, which we mitigate through man-
ual inspection by two raters.

4 RESULTS

In this section, we provide results with relevant discussion.

4.1 Results

The closed coding process took 121 and 186 hours respectively,
for the first and second authors. The Cohen’s Kappa between the
first and second author is 0.88, which is ‘almost perfect’, according
to Landis and Koch [14]. Upon completion of the closed coding
process, we identify disagreements for 101 commit messages. The
last author of the paper with 10 years of experience in software
engineering acted as a resolver. The last author’s decision is final
while resolving disagreements.

Answer to RQ: How Frequent are Vulnerabilities Reported
for Elixir Programs? Upon resolving the disagreements we al-
together identify 90 commits to be labeled as “VULNERABLE’,
whereas 4,356 commits are labeled as ‘NEUTRAL’. The propor-
tion of vulnerability-related commits is 2.0%. We observe 319 Elixir
programs to be modified in the 90 vulnerability-related commits.
We also observe 9 of the 25 Elixir OSS repositories to include one
vulnerability-related commit. Attributes of our vulnerability dataset
are available in Table 2. The labeled dataset is available online as a
CSV file [2], which can be imported using existing APIs, such as
Pandas [17] and R [19].

Table 2: Attributes of Vulnerability-related Commits and
Elixir Programs

Attribute
Vulnerability-related Commits 90
Elixir Programs with >= 1 Vulnerability-related 319
Commits

Repositories with >= 1 Vulnerability-related Com- 9
mits

Count

We report the PER_YEAR_PROPORTION’ values in Table 3. We
observe the highest PER_YEAR_PROPORTION for 2020, whereas
the second highest PER_YEAR_PROPORTION is observed for 2019.
For 2015, we observe the third highest PER_YEAR_PROPORTION
values. One possible explanation is that the observed trends are
limited to the mined 25 repositories, i.e., how vulnerability-related
commits appear in these repositories determines the trends. Our
findings reported in Table 3 provides groundwork for further anal-
ysis related to vulnerability-related trends for OSS Elixir programs.

Table 3: PER_YEAR_PROPORTION Values. We observe an
increase in PER_YEAR_PROPORTION after 2019.

Type PER_YEAR_PROPORTION (%)
2012 0.94
2013 0.48
2014 1.74
2015 3.38
2016 1.92
2017 1.22
2018 1.05
2019 3.45
2020 3.85

4.2 Discussion

We discuss our findings in the following subsections:

4.2.1 A Disaster Waiting to Happen?: Implications for Researchers.
Table 2 shows that 18.0% of Elixir programs to be modified in at
least one vulnerability-related commit. As commit messages contain
developer-reported observations and actions [1], we conjecture that
our identified vulnerability-related commits can be under-reported,
and there might exist latent vulnerabilities that developers are not
aware of. Our conjecture is subject to empirical validation, which re-
searchers can investigate. One low-hanging fruit can be conducting
empirical studies that quantify vulnerabilities in Elixir programs
by applying static analysis tools. Furthermore, researchers can in-
vestigate why developers introduce security vulnerabilities. Such
investigation can lead to the identification of reasons, such as lack
of tools, lack of security awareness, and pressure to develop projects.
Based on identified reasons researchers can work together with the
Elixir community to derive best practices to mitigate vulnerabilities
in Elixir programs. Without derivation and integration of secure
software development practices for Elixir, we predict an impending
disaster waiting to happen for Elixir-based projects, as Elixir is used

in a wide-range of domains, such as smart farming .

4.2.2 Implications for Practitioners. From Table 2 we observe 18.0%
of the Elixir programs in our dataset to be modified in a commit
that maps to a vulnerability. We advocate for a ‘shift left’ approach
where practitioners integrate secure software development prac-
tices so that developers repair vulnerable code changes before code
is pushed to production. One possible approach could be using
security-focused code review, where developers with security ex-
pertise review code changes for potential vulnerabilities. Practi-
tioners can also use Elixir-focused static analysis tools, such as
Sobelow 2.

!https://elixir-lang.org/blog/2020/08/20/embedded-elixir-at-farmbot/
Zhttps://github.com/nccgroup/sobelow

5 CONCLUSION

The widespread use of Elixir in a wide range of domains, such as in-
stant communication, smart farming, and social media necessitates
Elixir programs to be free of vulnerabilities so that malicious users
cannot exploit developed Elixir programs. An empirical study of
vulnerabilities in Elixir programs can provide an understanding of
how frequent vulnerabilities are introduced in Elixir programs. By
applying closed coding with 4,446 commits mined from 25 Elixir
OSS repositories we quantify the frequency of vulnerability-related
commits for Elixir programs. We observe 2.0% of the 4,446 commits
to be vulnerability-related. Based on our findings, we (i) recommend
practitioners to adopt a shift left policy by applying static analysis
on Elixir programs, and (ii) recommend researchers to systemat-
ically investigate the reasons why vulnerabilities are introduced
in Elixir programs. Our paper lays the groundwork for a vision
of a Elixir ecosystem, where developers will pro-actively mitigate
vulnerabilities with secure software development practices.

ACKNOWLEDGMENTS

We thank the PASER group at Tennessee Tech University for their
valuable feedback. This research was partially funded by the U.S.
National Science Foundation (NSF) through Award # 1852126, #
2043324, and # 2026869.

REFERENCES

[1]" A. Alali, H. Kagdi, and J. I. Maletic. 2008. What’s a Typical Commit? A Charac-
terization of Open Source Software Repositories. In 2008 16th IEEE International
Conference on Program Comprehension. 182-191. https://doi.org/10.1109/ICPC.
2008.24

[2] Anonymous. 2021.
3d9ef789dcdffbdcd0ds

[3] Humberto Rodriguez Avila, Elisa Gonzalez Boix, and Wolfgang De Meuter. 2017.
An Elixir library for programming concurrent and distributed embedded sys-
tems. In Companion to the first International Conference on the Art, Science and
Engineering of Programming. 1-1.

[4] Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Predicting the
popularity of GitHub repositories. In Proceedings of the The 12th International
Conference on Predictive Models and Data Analytics in Software Engineering. 1-10.

[5] Amiangshu Bosu, Jeffrey C. Carver, Munawar Hafiz, Patrick Hilley, and Derek
Janni. 2014. Identifying the Characteristics of Vulnerable Code Changes: An
Empirical Study. In Proceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (Hong Kong, China) (FSE 2014).
Association for Computing Machinery, New York, NY, USA, 257-268. https:
//doi.org/10.1145/2635868.2635880

[6] Mauricio Cassola, Agustin Talagorria, Alberto Pardo, and Marcos Viera. 2020. A
gradual type system for elixir. In Proceedings of the 24th Brazilian Symposium on
Context-Oriented Programming and Advanced Modularity. 17-24.

[7] Anshuman Chhabra and José Valim. 2018. Tensorflex: Tensorflow bindings for
the Elixir programming language. (2018).

[8] Jacob Cohen. 1960. A Coefficient of Agreement for Nominal Scales. Educational
and Psychological Measurement 20, 1 (1960), 37-46. https://doi.org/10.1177/
001316446002000104 arXiv:http://dx.doi.org/10.1177/001316446002000104

[9] Prem Devanbu, Thomas Zimmermann, and Christian Bird. 2016. Belief and Evi-
dence in Empirical Software Engineering. In Proceedings of the 38th International
Conference on Software Engineering (Austin, Texas) (ICSE '16). ACM, New York,
NY, USA, 108-119. https://doi.org/10.1145/2884781.2884812

[10] Gints Dreimanis. 2020. 8 Companies That Use Elixir in Production. https:
//serokell.io/blog/elixir-companies

Gints Dreimanis. 2020. Serokell Software Development Company. https://
serokell.io/blog/introduction-to-elixir

Geovane Fedrecheski, Laisa CP Costa, and Marcelo K Zuffo. 2016. Elixir pro-
gramming language evaluation for IoT. In 2016 IEEE International Symposium on
Consumer Electronics (ISCE). IEEE, 105-106.

Karolina Kurcwald. 2020. Eight Famous Companies Using Elixir—And Why They
Made the Switch. https://www.monterail.com/blog/famous-companies-using-
elixir

J. Richard Landis and Gary G. Koch. 1977. The Measurement of Observer
Agreement for Categorical Data. Biometrics 33, 1 (1977), 159-174. http:

Dataset for Paper. https://figshare.com/s/

[11

=
&

[13

[14

//www.jstor.org/stable/2529310

[15] Wolfgang Loder. 2015. Erlang and Elixir for Imperative Programmers. Chapter
16: Code Structuring Concepts, section title Actor Model (2015).

[16] Nathan Long. 2021. Elixir is Safe. https://dockyard.com/blog/2021/03/30/elixir-
is-safe

[17] Wes McKinney et al. 2011. pandas: a foundational Python library for data analysis
and statistics. Python for High Performance and Scientific Computing 14, 9 (2011).

[18] Johnny Saldafa. 2015. The coding manual for qualitative researchers. Sage.

[19] Sylvia Tippmann. 2015. Programming tools: Adventures with R. Nature News
517, 7532 (2015), 109.

